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ABSTRACT 

A numerical approach to  solving Kepler’s universal trans- 
cendental equation is presented. A universal first approximation to 
the solution is obtained by solving a cubic equation which resembles 
the parabolic conic equation. A quadratic Newton-Raphson itera- 
tion technique is discussed. Results indicate that this technique 
gives a solution to 8-digit accuracy for most practical cases by 
only a few repeated iterations. 
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A NUMERICAL SOLUTION OF KEPLER'S PROBLEM IN 
UNIVERSAL VARIABLES 

I. INTRODUCTION 

In the classical approach to the problem of finding the position on a 
Keplerian orbit at a given time one is led to the necessity of solving one of 
the three following transcendental equations, corresponding to eccentricities 
smaller, equal and larger than one respectively, 

= 1 sp + p3'6 
1 q 3 / 2  ( e  - l y 3 l 2  ( e  sinhH -H) 

where 

7 = fi ( t - T )  

E and H are  the eccentric anomalies of the elliptic, and hyperbolic orbits re- 
spectively; in the parabolic case v is the true anomaly. The symbols q and e 
represent as usual the periapsis distance and the eccentricity respectively. 
Since Gauss' time, a wealth of methods have been developed to deal with the 
difficulties which arise especially when the eccentricity of the orbit is large or 
close to 1. All these methods are  essentially based on the use of formulas and 
tables especially devised for particular cases. A good account of these methods 
may be found in Watson (1964), Herget (1948), o r  Dubyago (1961). They give 
satisfactory answers when one has to deal for a long time with the same orbit 
o r  with a certain limited type of orbits. However in, some actual applications, 
as, for example, in the calculations of interplanetary trajectories where the 
orbit may suffer qualitative and quantitative drastic changes, a more uniform 
approach is necessary to solve Kepler's problem. 
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Herrick (1965) published a comprehensive paper on "universal variables" 
reviewing many different proposals and including a bibliography which goes 
back to his own early papers of 1945 and 1948 and those of Stumpff and others. 
By the use of the universal variables, the equations (1.1) are  substituted by 
a unique transcendental equation which is valid in all cases and allows a 
more uniform treatment of the problem. In general the solution of these funda- 
mental equations is obtained through a Newton-Raphson iteration process starting 
with an approximation of the solution. If this approximation is not too good the 
entire process may require a large number of iterations or  even worse it may 
not converge. 
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In the present paper we reduce the problem to a standard form and then the 
solution is obtained in two steps. In the first step an initial approximation to 
the unknown is obtained by solving a cubic equation which is close to the funda- 
mental equation in universal variables. Then by solving a second polynomial 
equation we obtain a correction of the first approximation which gives in most 
of the practical cases 8 o r  more correct significant figures in the result. By 
this method we have treated uniformly all orbits with eccentricities ranging from 
near zero to 1.5 and with sizes covering the motion of all bodies in the whole 
solar system. It is worth noticing that in its most general form Kepler's problem 
relates any point Po of the orbit to any other point p. We have chosen the point 
Po to be the periapsis to reduce the problem to a standard form and make all 
our numerical results comparable. On the other hand in many problems the 
points of interest on an orbit a r e  centered around periapsis, thus making this 
point the best practical choice. 

11. REDUCTION OF THE PROBLEM TO A STANDARD FORM 

We notice first that due to the symmetry properties of conic sections, we 
may assume that 7 is always positive. By the same reason in the elliptic 
case we may set as an upper limit for 7 the value 

which corresponds to half a period of revolution around the primary. For the 
parabolic and hyperbolic cases we set also an upper limit 7 c  which corresponds 
to a fixed heliocentric distance equal to 40 a.u. in order to reach Pluto's orbit. 

From the form of the equations (1.1) we observe that for a given T the cor- 
responding solutions, E ,  p ,  or  H depend on the values of the parameters q and 
e .  The influence of q can be easily eliminated by the transformation 
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and we obtain 

where E in thi 
variable 

(1 - e ) - 3 ' 2  ( E -  e s i n E )  

B t ~ ~ / 6 ,  B = f i t a n v / 2  

( e  - 1)-3 '2  ( e  sinhH - H )  

These equations a re  formally identical to (1.1) and they become identical to 
(1.1) when q = 1. In what follows we shal l  always consider q = 1; in practical 
cases where q # 1 it is only necessary to apply the transformation (2.2). 

The universal form of these equations may be obtained by expanding sin E 
and sinh H in powers of E and H respectively. Then we may define a variable 
B by 

instance is equivalent to E or H of equations (2.3) and another 

5 = - B 2 ( 1 - e )  . (2.5) 

Then introducing the special functions, 

we have the universal equation 

T~ = B f Z, (B) 

which represents the three equations (2.3). 

(2.7) 
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It is interesting to note that by writing 

we have 

Zi eB' Fi 

The Fi ' s  are the functions introduced by Stumpf (1959) in his treatment of the 
two-body problem in universal variables; see also, Blanchard and Wolf (1967). 
The functions Z i  have some properties similar to those of the functions Fi and 
we shall use them in what follows. For continuity of thought, these properties 
are included in Appendix A. 

III. THE UNIVERSAL FIRST APPROXIMATION 

The reduction of Kepler's problem to a standard form results in solving 
the equation 

7 = B + Z, (B)  

where the subindex of 7 has been omitted. 

Figure 1 is a graph of the above function for selected values of the ec- 
centricity. It is apparent from this graph that a possible universal first guess 
for solving the problem would be to chose the parabolic solution. 

In this case e = 1 and (3.1) reduces to the cubic equation 

(3.2) 

It is evident from the graph that the solution of this equation as a f i rs t  approxima- 
tion to the other cases is good o r  acceptable only for small values of 7 .  Logically 
the situation improves when e is closer to 1. 
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We have found that a much better approximation can be obtained. We may 
write the fundamental equation (3 .l) in the form 

and due to property I11 of Appendix A, we may write 

For eccentricities close to 1 o r  for values of IBI< 1 the last term may be 
neglected in a first approximation. This suggests as an approximation to the 
fundamental equation 

B t 7 - r  eB = 0 ; 
(3 *4) 

we shall refer to this as the "modified parabolic equation" because it differs 
from the parabolic equation (3.2) by the factor e introduced in the second term. 
We may note immediately that if Bo is the solution of (3.4) then 

a property that we shall use later. The modified parabolic equation (3.4) has 
the desirable property that for e = 0 and e = 1 it represents exactly the 
circular and parabolic cases respectively and i ts  solution, Bo, gives in general 
an approximation to the true solution B of the fundamental equation (3.1). It is 
important to note that (3.4) has the reduced form of a cubic with a discriminant 

24 i- 2 7 r 2 e  . D =  
3e 

9 

as can be seen D is always positive. Thus, the cubic equation has always 
a single real  root and two complex conjugate roots that we ignore. The 
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resolvent formula for the real  root reduces in this case to 

where 

Graphs 2a, 2b, and 2c represent a comparison of the approximate solution 
with the true solution. The ordinate is the difference between the true solution 
and the approximate solution given by (3.6) while the abscissa is a normalized 
time, that is, 

r 
r - -  

r C  

- w -  (3.7) 

where rc is defined in Section 2. For the elliptic case rc is given by (2.1) o r  
due to our assumption that q = 1 results in 

Superimposed on the graphs are  various constant true anomaly curves to indicate 
the relative geometry between different conics. For clarity, the elliptic and 
hyperbolic cases a re  presented separately. In Figures 2b and 2c we show the 
hyperbolic cases in two different scales, the latter is enlarged to show more 
details. Note that near periapsis the approximation is best, as might be expected 
from the nature of the first approximation. For true anomalies of less  than ap- 
proximately 40" the approximation gives roughly 4 digits of accuracy, o r  better; 
approaching apoapsis, that is for values of close to  180°, the e r r o r  becomes, of 
course, larger. For the hyperbolic cases the trend is similar although for 
distances close to Pluto the accuracy is still good to one digit. 
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IV. IMPROVEMENTS TO THE UNIVERSAL FIRST APPROXIMATION 

Due to the particular features of this problem it is possible to obtain a cor- 
rection AB, to improve the first approximation Bo by solving a polynomial equa- 
tion where the degree may be chosen according to the desired accuracy in the 
result. In fact, consider (3.1) written in the form 

+(B) = B t Z, (B) - T 0 . (4 1) 

Consider now the Taylor Series expansion of the equation about the first 
guess Bo obtained by solving the modified parabolic equation (3.3), that is, 

where the subindex zero means that the corresponding function is to be calculated 
for B = B ,,. In view of the form of (4.1) and the Property 11 of Appendix A we 
have for the first three derivatives the following; 

7 4’ = 1 + z, 

4” = z, 

J 

Theoretically it is possible to invert this  series of AB; however, by considering 
only a few terms and solving the resultant polynomial equation for AB and adding 
this correction to B we obtain a new value of B accurate to enough significant 
digits for all practical application. In other words we may establish the itera- 
tion formula 

(4 04) = B, + AB, , v = 0, 1, 2, ... B v + 1  

where B is the solution of the modified cubic equation (3.3) and m,, , is the 
solution of a polynomial equation the degree of which depends on the number of 

7 



terms we consider in the series of (4.2). It is important to notice here that a 
similar but not entirely equivalent procedure has been proposed by Stumpff, 
based on an ingenious rearrangement of the series (4.2) into a so-called closed 
form (See Appendix B). 

If we take just the first term of the series (4.2) we have the linear equation 

which solution, 

is the familiar Newton-Raphson formula. 

By taking two terms of the series we obtain the quadratic equation 

The solutions of this equation obtained by the usual resolvent formula may be 
written in  the following forms; 

The solution corresponding to the minus sign is a spurious one as it results 
from the simple consideration that if +(Bo) is small or zero then mo must be 
also small o r  zero and that can occur i f  we adopt the solution with the positive 
sign. On the other hand on account of (3.5) we obtain; 

Thus, in  view of property I of Appendix A we have the resul, that for the hyper- 
bolic case it is negative; for the parabolic case (e= 1) it reduces of course to 
zero. These results can also be observed from Figure 1. 
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If the correction furnished (4.7) is not sufficiently accurate we may iterate 
this formula together with (4.4). We have found that in most of the cases only 
one more iteration was necessary to achieve an accuracy of 8 significant digits. 
The numerical results after a correction of the f i rs t  approximation by formula 
(4.7) are  given in Figures 3a, 3b and 3c. The arrangement of these figures is 
similar to that of Figures 2a, 2b, 2c. In the elliptic cases one can see that just 
one application for formula (4.7) yields at least 6 correct digits in the result 
for true anomalies up to 120". We remark that some apparent discontinuities 
might appear in the graph of Figure 3a. The reason is that in certain places 
formula (4.7) overcorrects beyond the true solution thus resulting in negative 
differences, which however are still small. For the sake of uniformity of the 
graphic representation of the results we inserted dotted lines where these 
circumstances occur. For the hyperbolic cases we have also satisfactory 
results but for extreme eccentricities the results indicate that additional cor- 
rections are necessary. 

By taking one more term in the series (4.2) we obtain the cubic equation 

c$~(AB,) = (qoAB$ + (%)o&3d f (1 + Z 2 ) o A B o  + +(Bo) = 0 (4.9) 

The direct solution of th i s  equation turns out to be impractical especially 
due to the tests which a re  necessary to apply to eliminate the spurious roots. 
Instead we may use as a first approximation the value obtained from the quadratic 
equation (given by (4.7)) and improve it by applying a Newton-Raphson scheme to 
the cubic equation (4.9). Thus we obtain an improved root by a few repeated a p  
plications of the following formula, 

The numerich results obtained by this procedure are shown on Figures 
4a, 4b and 4c. The ordinate on these graphs are  the difference between the 
true solutions and the approximate solution obtained by solving the two cubics 
given by equations (3.4) and (4.9). As on the graphs presented earlier, there 
are curves of constant true anomaly values superimposed on the graph to 
indicate the relative geometry. For the elliptic cases, an accuracy of 8 digits 
is obtained for anomalies up to approximately 110" for all eccentricities. A 
similar result is obtained for the hyperbolic orbits. At the extreme positions 
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in the orbit, that is, near apoapsis, there is 2 o r  3 digit accuracy in the approxi- 
mation. Further iterations would be needed to achieve the desired 8-digit 
accuracy. One application of the quadratic correction given by Equation (4.7) 
will completely solve the problem, except for the extreme positions of the 
hyperbolic conics greater than 1.2 where an additional iteration is necessary. 
To reach our goal of obtaining a solution with at least 8 accurate digits both pro- 
cedures, the double iteration on the quadratic equation or  the first approximation 
from the quadratic and the second from the cubic, have approximately the same 
efficiency. 

V. CONCLUSIONS 

It is possible to normdize the general Kepler problem and express the 
result in universal variables such that a uniform procedure can be established 
to solve this equation. A modified parabolic equation is used as a universal 
first approximation for all conics of practical interest, with sizes covering 
the solar system. The modification of the parabolic conic equation is due 
to an inclusion of a linear dependence of the eccentricity of the orbit. This 
approximation is well suited for near periapsis situations. A substantial im- 
provement to this approximation can be made by solving a quadratic or  cubic 
equation. In the case of the cubic correction this increases the range of ap- 
plicability of the solution for better than 8-digit accuracy to true anomalies 
of about 110'. Two repeated applications of the quadratic correction completely 
solves the problem for 8-digit accuracy for all considered conics. Finally we 
can summarize the entire procedure to solve Kepler's problem as follows: 

1) Data: q = periapsis distance 

e = eccentricity (in the range 0 to 1.5) 

T = time of periapsis passage 

t = current time 

2) Calculate 

- k(t -T) 
q3 / 2 r -  

where k = Gauss's constant, 
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3) Solve the modified cubic equation 

by the resolvent formula 

4) If e = 1 (parabolic case) 

true anomaly v = 2ta*-1(3 ' 

5) If e# 1 (elliptic o r  hyperbolic cases) Find a correction AB, by the 
iteration formulas 

= B, + ABv , v = 0, 1, 2, * ' *  But, 

where 

For the definition, properties and methods of calculating the functions 
Z i  (B,) see Appendix A. The iteration proceeds until AB, is smaller 
than a certain fixed tolerance (say 10 -'). 

6) Alternative to Step 5 

After obtaining &lo calculate the following approximations by the iteration 
defined by 

Y = 0, 1, 2, * - *  
43 (4) 
+;(AB,) ' 

4 t 1  = m, - 
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EXPLANATION O F  FIGURES 

Figure 1: Graph of Kepler's Equation in Universal Variables 

Several curves corresponding to some selected values of the eccentricity 
showing their relationship to the parabolic case. The upper limits for these 
curves correspond, in the elliptic case, to half a period and, in the hyperbolic 
and parabolic cases, to a fixed heliocentric distance equal to 40 a.u. 

Figures 2a, 2b, 2c: Differences Between the First Approximation (modified 
parabolic equation) and the True Solutions 

- 

In this figure the ordinates are the differences expressed on a logarithmic 
scale so that the number of correct significant figures of the approximate solu- 
tion can be obtained readily; the abscissas correspond to the normalized time 
defined in Section 2. Figure 2a corresponds to the elliptic cases. Constant 
true anomaly curves indicate the relative geometry of the problem. Near 
periapsis the approximation is best; however for true anomalies of less than 
40", say, the approximation is still good to 4 digits. The approximation is 
equally good for near circular and near parabolic cases. 

Figures 2b and 2c correspond to the hyperbolic cases. The trend is similar 
to that of the elliptic case but with increasing values of 7 the loss of accuracy is 
more rapid depending on the values of the eccentricity, and requires a further 
correction. 

Figures 3a, 3b, 3c: Differences between Approximate and True Solutions After 
Quadratic Correction Given by Formula (4.7) 

The graphic arrangement of this figure is similar to that of the previous 
ones. In the elliptic cases we have 6 significant digits for true anomalies up 
to 120". For the hyperbolic cases we have also satisfactory results but for 
extreme eccentricities the results indicate that additional corrections are 
necessary. 

Figures 4a, 4b, 4c: Differences between Approximate and True Solutions After 
Cubic Correction Given by Formula (4.9) 

The graphic arrangement is similar as above, For the elliptic cases an ac- 
curacy of 8 digits is obtained for anomalies up to 110" for all eccentricities. A 
similar result is obtained for the hyperbolic orbits, except for extreme positions 
where still an accuracy of 2 or  3 digits is obtained. 
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Figure 2b. Differences between the f irst approximation, i .e . ,  modified parabolic equation, 
and the true solutions. (Hyperbolic Cases)  
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Figure 2c. Differences between the f irst approximation, i.e., modified parabolic equation, 
and the true solutions (Hyperbolic Cases; enlarged scale) 

19 



lo-'  

l o -*  

IO - 4  

A0 

10 -' 

10-E 

: = 0.9 

3 = 0.8 
B = 0.7 
B =0.6 
e ~ 0 . 5  
4 = 0.4 

B =0.3 

e ~ 0 . 2  

e =0.1  

e = 0.05 

v =  180' 

0 0.1 0.2 0.3 0.4 0.5 0.6- 0.7 0.8 0.9 1.0 1 . 1  1.2 

T 
Figure 30. Differences between approximate and true solutions after quadratic correction 

given by formula (4.7) (E l l ip t ic  C a r e s )  

20 



100 

10-70 

10” 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 . 1  1.2 

lo-* 

ABQ 

1 0 - ~  

10-5 

10-6 

, e = 1 . 5  

T 
Figure 3b. Differences between approximate and true solutions after quadratic correction 

given by formula (4.7) (Hyperbolic Cases)  

21 



A BQ 

e = 1.5 
e = 1.4 

e = 1 . 3  

e = 1.2 

e = 1 . 1  

. e = 1.05 

I I I I I I 1 
10-9; 0.05 

Figure 3c. Differences between approximate and true solutions after quadratic correction 
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Figure 4a. Differences between approximate and true solutions after cubic correction 
given by formula (4.9) (El l ipt ic  Cases)  
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given by formula (4 .9 )  (Hyperbolic Cases)  
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APPENDIX A 

PROPERTIES OF THE Z -FUNCTIONS 

The universal Z-Functions used in this study are defined as follows; 

where 

5 = - B 2 ( 1 - e )  

I. For any i > 0, Zi > 0. This follows from the fact that e and B a re  positive 
and for 5 > 0 the result is obvious; for 5 < 0, function Fi is an alternate series 
where terms decrease in absolute value and the first term is l/i! > 0. 

11. dZi/dB = Z i - l .  This expression is obtained by differentiating Z .  after re- 
placing 5 in terms B. 

In. Let us  wri te  

m 

then rearranging a 
formula 

d noting that [/B2 = e - 1 we obt in the recursive 

eB' - -  z i  - i !  + ( e - 1 )  Z i + *  . 

This result means that for calculating the Z-functions it is necessary only 
to apply the definition formula for those of the largest order of even and 
odd indices and the rest  of the lower order Z-functions are  calculated by 
the recursive formula. Also, reduction formulas exist, (see Blanchard 
and Wolf (1967)) which allow the infinite series presented above to be cal- 
culated with only a relatively few number of terms. Herron, et al. (1967) 
also suggests some numerical techniques for efficiently calculating series 
of this type. 
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APPENDIX B 

A "CLOSED" FORM FOR CORRECTING THE FIRST APPROXIMATION 

Stumpff (1959), in his book on celestial mechanics (Vol. I, p. 220-222), has 
proposed a rearrangement of the series (4.2) into a "closed" form that in the 
context of our approach to the problem may be described as follows. The ex- 
pansion (4.2) may be written briefly as 

and applying Properties 11 and IlI of Appendix A we have 

1 ) Z 3  

c$'(B) 1 f Z, 

+"(B)  = Z, - eB -t ( e  - 

c$"'(B) - ( e  - l ) + ' ( B )  f 1 

+""(B) = ( e  - 1) 4" (B)  

( e - l ) + ( B )  -t B + ( e -1 )7  

(B-3) 

- 

- 

and in general 

4 ( P t 2 )  (B)- (e  - l ) + ( p )  ( B )  = 0 for p 2 (B-4) 

Let us now recall the recursion formula for the function Fi 
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valid for any argument Z .  In particular we shall call 7 
argument z 1 ( e  - 1 )AB2 in which case 

the function Fi  for the 

I '  

and we have ais0 the recursion formula 

Applying this expression for the factorials in (B-1) and after a simple re- 
arrangement we obtain 

$(B + m >  = 
' 0  +(B) + '1 +' (B)  AB -t Y 2  [+"W - ( e  - 1) +w] AB2 

The summation in the last term must vanish because of property (B-4); then 
this is formally a closed form for the expansion of +(B tAB)but, of course, the 
higher powers of 4 3  a re  still contained in the function y i  . However, based on 
this result, it is possible to obtain an iteration formula to calculate the correc- 
tion AB when a first approximation Bo is known. In fact we must have 

Y o  -t 4' (Bo) + y 2  F'' (Bo) - ( e  - 1) +(Bo)] AB2 

' 7'3 [@' (Bo) - (e  - 1 ) 4' (B,)] AB3 = 0 (-9) 

which suggests the iterative formula 
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The first approximation may be obtained by the formula 

(B-11) 

which again is Newton-Raphson’s formula. By neglecting in the expansions 
(B-6) all but the first terms one obtains y2 = 1/2 and yJ = 1/6. It is then 
possible to show by a simple algebraic manipulation that equation (B-9) becomes 
identical to what one could obtain directly by truncating (B-1) after the fourth 
term, as we have done in Section 4. 
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